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Tommaso Rossi La géométrie sous-riemannienne du problème de Didon Mars 14, 2024 1 / 11



Plan de l’exposé
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La reine Didon

Au debut de 9ème siecle A.C nâıt

Didon, princesse de Tyr (actuel

Liban).

∼ 820 A.C. : Au mort du roi de Tyr,

son frère Pygmalion assassine son

époux afin de prendre le pouvoir.

Didon, avec une suite nombreuse,

s’enfuit vers l’Afrique du Nord.

814 A.C. : Didon atteint Byrsa

(proche de l’actuel Tunis) et

demande asile aux autochtones. Elle

obtient pacifiquement des terres

pour s’y établir, par un accord avec

le seigneur local. Mais, on ne lui

concède que ce que pourrait couvrir

la peau d’un bœuf.

Figure: Didon abandonnée - A. Sacchi

1599–1661
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La construction de Chartage - 814 A.C.

Didon découpe la peau en si fines lanières qu’elle obtient, bout à bout, une corde de

longueur de près de 4 km. Avec la corde ainsi formée, elle encercle son territoire et

fonde la très célèbre ville de Carthage.

Figure: Carte de la Carthage punique (coloriée en gris)
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Le problème de Didon

En formant un arc de cercle plutôt qu’un triangle, un rectangle, un carré ou tout autre

forme géométrique sans point double, Didon avait donc admis la solution au problème

isopérimétrique suivant :

Soit L une ligne donnée. De toutes les courbes, sans points double, dont les points initial

et final sont sur L, et de longueur donnée, trouver celle qui (avec L) entoure l’aire la plus

grande.

L

c

Mar méditerrannée Mer Méditerranée 

L

c

Mar méditerrannée Mer Méditerranée 

Figure: Les deux courbes ont la même longueur, mais l’aire entourée par la seconde est plus

grande. Ici, L représente le littoral méditerranéen.

Tommaso Rossi La géométrie sous-riemannienne du problème de Didon Mars 14, 2024 4 / 11



Plan de l’exposé
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3 La géométrie sous-riemannienne du problème de Didon
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La formalisation du problème de Didon

Soit L = {y = 0} l’axe des x et soit ℓ ∈ (0,+∞). Le problème de Didon est un problème

de maximisation sous contrainte : trouver une courbe c : [0, 1] → R2 telle que
c(0), c(1) ∈ L,

Longeur de c = ℓ;

Aire obtenue entre c et L −→ max

(D)

De manière explicite, soit c(t) = (x(t), y(t)) une paramétrisation de la courbe telle que

(x(0), y(0)) = (0, 0). Alors, on a :

L

c

x

y

Ω

Figure: La région Ω a comme

contour c et L.

ℓ(c) =

ˆ 1

0

√
ẋ2(s) + ẏ 2(s) ds;

A (c) =

ˆ
Ω

dx dy =
1

2

ˆ 1

0

(x(s)ẏ(s)− ẋ(s)y(s)) ds.
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La solution du problème de Didon - I

On utilise des téchniques de calcul des variations pour trouver la solution à (D):

1 On suppose que c est une solution à (D) : c : [0, 1] → R2 est une courbe telle que

c(0) = (0, 0), c(1) ∈ L et

A (c) = max
c̃

A (c̃) sous la contrainte ℓ(c) = ℓ,

2 Alors c est point critique de la fonction lagrangienne de ce problème, donnée par

L (x(s), y(s), ẋ(s), ẏ(s)) :=
1

2
(x(s)ẏ(s)− ẋ(s)y(s))︸ ︷︷ ︸

intégrande de A (·)

+λ
√

ẋ2(s) + ẏ 2(s)︸ ︷︷ ︸
intégrande de ℓ(·)

,

où λ ≥ 0 est le multiplicateur de Lagrange.

Xmin

Xmax

f(x)

0.5 1.0 1.5

-2

-1

1

2

La fonction f a deux points critiques xmin et

xmax. Ils sont tels que

f ′(xmin) = f ′(xmax) = 0.
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La solution du problème de Didon - II
3 Comme c est point critique de L , on a :

∇L (c) = 0 ⇝ équations d’Euler-Lagrange.

4 Nous résolvons les équations d’Euler-Lagrange associées à L et nous obtenons qu’ils

existent deux constantes C1,C2 ∈ R telles que

d

dt

[
(x(t)− C1)

2 + (y(t)− C2)
2
]
= 0.

Donc, on trouve une constante R > 0 telle que

(x(t)− C1)
2 + (y(t)− C2)

2 = R2.

(0,0)

(C1,C2)

c(1)

R R

x

y

⇝ Cela signifie que c(t) = (x(t), y(t))

paramètre un arc de cercle de centre

(C1,C2) et rayon R.
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Relever le problème dans R3 - I

But : “relever” le problème de Didon dans R3 et définir la structure géométrique associée

à ce problème.

Soit c : [0, 1] → R2 avec composantes c(t) = (x(t), y(t)) et supposons c(0) = (0, 0),

c(1) = (x1, y1). On rappel que

A (c) =
1

2

ˆ 1

0

(ẏ(s)x(s)− ẋ(s)y(s)) ds

Ensuite, nous pouvons relever le problème dans R3, en définissant la composante

additionnelle de c comme suit

z(t) := A
(
c|[0,t]

)
=

1

2

ˆ t

0

(ẏ(s)x(s)− ẋ(s)y(s)) ds.

La courbe γ(t) := (x(t), y(t), z(t)) a la propriété que z(t) est l’aire de la région dans R2

délimitée par la projection (x(s), y(s)) et la ligne passant par l’origine et (x(t), y(t)) .

⇝ Cette procédure nous permet de définir une géométrie non-euclidienne sur R3.
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Relever le problème dans R3 - II

(0,0)

c(t)

x

y

c

A(c [0,t])

Figure: Une courbe quelconque en R2 est relevée uniquement à une courbe en R3.
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Relever le problème dans R3 - III

(0,0)

c(t)

x

y

c

A(c [0,t])

Figure: Un arc de cercle est relevé à un morceau de spirale.
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Le groupe de Heisenberg - I

Nous définissons une géométrie non-euclidienne sur R3. Considérons la famille de plans

donnée par

D(x,y,z) := span {X (x , y , z),Y (x , y , z)} ,
où X et Y sont deux vecteurs dans R3 définis par

X (x , y , z) :=

 1

0

− y
2

 , Y (x , y , z) :=

0

1
x
2

 .

D est appelée distribution et elle a toujours dimension 2.

Figure: La distribution au points du plan {z = 0}.
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Le groupe de Heisenberg - II

Nous définissons un produit scalaire ⟨·, ·⟩ sur D, en déclarant X et Y orthonormés. Donc,

pour tout v ,w ∈ D(x,y,z), on a

v = v1X (x , y , z) + v2Y (x , y , z), w = w1X (x , y , z) + w2Y (x , y , z),

ainsi que

⟨v ,w⟩ = v1w1 + v2w2

On ne peut calculer le produit scalaire que pour les vecteurs sur D.

Par exemple, le vecteur (0, 0, 1)T n’appartient pas à D et donc on ne peut pas évaluer sa

norme.

Définition. Le groupe de Heisenberg H est R3 équipé de la distribution D et du produit

scalaire ⟨·, ·⟩ sur D.

⇝ Le groupe de Heisenberg est un exemple de géométrie sous-riemannienne.
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Les courbes admissibles en H - I

Définition. Nous disons qu’une courbe γ : [0, 1] → R3 est admissible, si et seulement si

elle est tangente à Dγ(t), c’est-à-dire :

γ̇(t) ∈ Dγ(t), ∀ t ∈ [0, 1].

Figure: Une courbe admissible est tangente à la distribution

Rappel que le produit scalaire n’est défini que sur la distribution.

On ne peut que évaluer la vitesse des courbes admissibles!

Tommaso Rossi La géométrie sous-riemannienne du problème de Didon Mars 14, 2024 10 / 11



Les courbes admissibles en H - II

Soit maintenant c : [0, 1] → R2 et soit γ : [0, 1] → R3 son relèvement. Alors, γ(t) est

admissible. En effet, on a pour tout t ∈ [0, 1] :

γ̇(t) =

(
ẋ(t), ẏ(t),

1

2
(ẏ(t)x(t)− ẋ(t)y(t))

)
= ẋ(t)X (γ(t)) + ẏ(t)Y (γ(t)).

Une courbe est admissible si et seulement si elle est le relèvement d’une courbe

c : [0, 1] → R2 dans R3.

En rappelant que X ,Y sont orthonormés, la vitesse de γ(t) = (x(t), y(t), z(t)) est

⟨γ̇(t), γ̇(t)⟩
1
2 =

√
ẋ2(t) + ẏ 2(t).

Alors, la longeur d’une courbe admissible γ en H est la même que celle de sa projection c

en R2, notamment :

ℓH(γ) =

ˆ 1

0

√
ẋ2(t) + ẏ 2(t) dt = ℓ(c).

ℓR3(γ) =
´ 1
0

√
ẋ2(t) + ẏ 2(t) + ż2(t) dt ̸= ℓH(γ).
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La géométrie sous-riemannienne du problème de Didon

Théorème

Une courbe admissible γ : [0, 1] → H, γ(t) = (x(t), y(t), z(t)) est la courbe la plus

courte de γ(0) = (0, 0, 0) à γ(1) = (x(1), y(1), z(1)) dans H si et seulement si sa

projection c(t) = (x(t), y(t)) est la solution du problème (dual) de Didon pour les

courbes joignant (0, 0) et c(1) = (x(1), y(1)) avec une aire donnée de z(1).

Le problème dual de Didon : soit L une ligne donnée. De toutes les courbes, sans

points doubles, dont les points initial et final sont sur L, et telle que elle entoure une

aire donnée, trouver la plus courte.

Les courbes les plus courtes entre deux points donnés sont appelées géodésiques.

Dans R3, les géodésiques sont des lignes droites. Dans la géométrie non-euclidienne

de H, les géodésiques sont spirales.

Alors, le théorème dit que :

Géodésiques dans H ⇐⇒ Solutions au problème de Didon
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Merci pour l’attention !

Figure: La boule unité du groupe de Heisenberg
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