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La

reine Didon

Au debut de 9éme siecle A.C nait
Didon, princesse de Tyr (actuel
Liban).

~ 820 A.C. : Au mort du roi de Tyr,
son frere Pygmalion assassine son
époux afin de prendre le pouvoir.
Didon, avec une suite nombreuse,
s'enfuit vers I'Afrique du Nord.

814 A.C. : Didon atteint Byrsa
(proche de I'actuel Tunis) et
demande asile aux autochtones. Elle
obtient pacifiquement des terres
pour s'y établir, par un accord avec
le seigneur local. Mais, on ne lui
concede que ce que pourrait couvrir
la peau d'un beeuf.
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La construction de Chartage - 814 A.C.

@ Didon découpe la peau en si fines laniéres qu’elle obtient, bout a bout, une corde de
longueur de prés de 4 km. Avec la corde ainsi formée, elle encercle son territoire et
fonde la tres célebre ville de Carthage.

A |y Y

Figure: Carte de la Carthage punique (coloriée en gris)
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Le probleme de Didon

En formant un arc de cercle plutdt qu'un triangle, un rectangle, un carré ou tout autre
forme géométrique sans point double, Didon avait donc admis la solution au probleme

isopérimétrique suivant :

Soit L une ligne donnée. De toutes les courbes, sans points double, dont les points initial
et final sont sur L, et de longueur donnée, trouver celle qui (avec L) entoure |'aire la plus
grande.

AV U W W W
\\\\Me\r IV\Iethe|}rar>ee\ \ \\\ Mer Medlterranee\\

Figure: Les deux courbes ont la méme longueur, mais I'aire entourée par la seconde est plus
grande. Ici, L représente le littoral méditerranéen.
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La formalisation du probleme de Didon

Soit L = {y = 0} I'axe des x et soit £ € (0,+00). Le probléme de Didon est un probleme
de maximisation sous contrainte : trouver une courbe c : [0,1] — R? telle que

c(0),¢(1) € L,
Longeur de ¢ = ¢; (D)

Aire obtenue entre ¢ et L — max

De maniére explicite, soit c(t) = (x(t), y(t)) une paramétrisation de la courbe telle que
(x(0), y(0)) = (0,0). Alors, on a :

y

o {(c) = /0 V() 1 32(5) ds:

~0 o (c) :/dedy: %/Ol(x(s)y(s)—k(s)y(s))ds,

Figure: La région Q a comme

contour c et L.
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La solution du probleme de Didon - |

On utilise des téchniques de calcul des variations pour trouver la solution a (D):

@ On suppose que ¢ est une solution 3 (D) : ¢ : [0,1] — R? est une courbe telle que
c(0) =(0,0), c(1) € Let

o/ (c) = maxo/(&) sous la contrainte £(c) =¥,

@ Alors c est point critique de la fonction lagrangienne de ce probléeme, donnée par

Z(x(s),y(s); x(s), y(s)) := %(X(S)Y(S) = X(s)y(s)) +A V/X2(s) + y2(s),
————

intégrande de £(-)

intégrande de <7 (-)

ol A > 0 est le multiplicateur de Lagrange.

(%)
La fonction f a deux points critiques Xmin €t
Xmax. |ls sont tels que

Xinin

f/(xmin) = f/(xmax) =0.

b
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La solution du probleme de Didon - Il

© Comme c est point critique de ., on a :

VZ(c)=0

~» équations d’Euler-Lagrange.

@ Nous résolvons les équations d’Euler-Lagrange associées a .Z et nous obtenons qu'ils

existent deux constantes Ci, G, € R telles que

L -+ - ] =o.

Donc, on trouve une constante R > 0 telle que

(x(t) = Q> + (v(t) — G)* = R™.

,\(CnCz)

~ Cela signifie que c(t) = (x(t), y(t))

LR parameétre un arc de cercle de centre

(Gi, &) et rayon R.

RNCO)

(0,0)
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Relever le probléme dans R3 - |

But : “relever” le probleme de Didon dans R® et définir la structure géométrique associée
a ce probleme.

Soit ¢ : [0,1] — R? avec composantes c(t) = (x(t), y(t)) et supposons ¢(0) = (0,0),
¢(1) = (x1,y1)- On rappel que

() = 5 [ (G)x() — <)y (s) s

Ensuite, nous pouvons relever le probleme dans R?, en définissant la composante

additionnelle de ¢ comme suit
2() = o (c10a) = 3 [ (o)x(6) = K(9)(s)) as

La courbe v(t) := (x(t), y(t), z(t)) a la propriété que z(t) est I'aire de la région dans R?
délimitée par la projection (x(s), y(s)) et la ligne passant par I'origine et (x(t),y(t)) .

~+ Cette procédure nous permet de définir une géométrie non-euclidienne sur R
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Relever le probléme dans R3 -
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Relever le probléme dans R3 - Il

(0,0)
AlC|o.)

iz
vitl

z()=A(C|.q)
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Le groupe de Heisenberg - |
Nous définissons une géométrie non-euclidienne sur R*. Considérons la famille de plans
donnée par

Dixy.z) = span {X(x,y,2), Y(x,y,2)},

oll X et Y sont deux vecteurs dans R? définis par

1
X(x,y,z):=| 0 |, Y(x,y,z) =

NIX = O

D est appelée distribution et elle a toujours dimension 2.

Figure: La distribution au points du plan {z = 0}.
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Le groupe de Heisenberg - |l
Nous définissons un produit scalaire (-, -) sur D, en déclarant X et Y orthonormés. Donc,
pour tout v,w € D, ;), On a
V= VlX(X,%Z) + V2Y(X,y,Z), w= WIX(X7yaz) + W2Y(X,_y,Z),
ainsi que

(v,w) = viws + vown

On ne peut calculer le produit scalaire que pour les vecteurs sur D. )

Par exemple, le vecteur (0,0, 1)T n'appartient pas a D et donc on ne peut pas évaluer sa
norme.

Définition. Le groupe de Heisenberg H est R® équipé de la distribution D et du produit
scalaire (-, ) sur D.

~+ Le groupe de Heisenberg est un exemple de géométrie sous-riemannienne.
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Les courbes admissibles en H - |

Définition. Nous disons qu’une courbe v : [0,1] — R® est admissible, si et seulement si
elle est tangente a D, (), c'est-a-dire :

A(t) € Dyeys vte[o,1].

/

Figure: Une courbe admissible est tangente a la distribution

Rappel que le produit scalaire n’est défini que sur la distribution.

On ne peut que évaluer la vitesse des courbes admissibles! )
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Les courbes admissibles en H - Il

Soit maintenant ¢ : [0,1] — R? et soit v : [0,1] — R® son relevement. Alors, y(t) est
admissible. En effet, on a pour tout t € [0,1] :

(0= (X(0.7(0. 3 ((Ox(0) = (r(1) ) = DX () + IO Y (1 (0)

Une courbe est admissible si et seulement si elle est le relevement d'une courbe
c:[0,1] — R? dans R®. J

En rappelant que X, Y sont orthonormés, la vitesse de v(t) = (x(t), y(t), z(t)) est

(1), 3(0)F = V/32(0) + 72(0).

Alors, la longeur d'une courbe admissible v en H est la méme que celle de sa projection ¢

en ]R2, notamment :

() = [ VRO = ()

tea(7) = Jo v/3E(0) + 72(0) + 22(0) dt # Lu(7). J
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La géométrie sous-riemannienne du probleme de Didon

Théoreme

Une courbe admissible v : [0,1] — H, ~(t) = (x(t),y(t),z(t)) est la courbe la plus
courte de v(0) = (0,0,0) a (1) = (x(1),y(1),z(1)) dans H si et seulement si sa
projection c(t) = (x(t),y(t)) est la solution du probleme (dual) de Didon pour les
courbes joignant (0,0) et c(1) = (x(1), y(1)) avec une aire donnée de z(1).

@ Le probléeme dual de Didon : soit L une ligne donnée. De toutes les courbes, sans
points doubles, dont les points initial et final sont sur L, et telle que elle entoure une

aire donnée, trouver la plus courte.

@ Les courbes les plus courtes entre deux points donnés sont appelées géodésiques.
Dans R3, les géodésiques sont des lignes droites. Dans la géométrie non-euclidienne

de H, les géodésiques sont spirales.
Alors, le théoreme dit que :

Géodésiques dans H = Solutions au probleme de Didon J
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Merci pour |'attention !

Figure: La boule unité du groupe de Heisenberg
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